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Abstract—To prolong the life-time of sensor nodes used in space exploration,
cooperative modulation techniques had been proposed which rely on informa-
tion sharing among the nodes, e.g. broadcasting. The desire to efficiently reduce
the overall energy-per-bit of a node motivated this study since the diameter di-
rectly affects broadcasting. In this study, we analysed and found that when the
number of transmissions are bounded by constants < 20, the likelihood of suc-
cessful broadcast is small. Using simulations, we observed that the diameter
decreases very fast as the transmission radius increases. Another observation
is that the largest connected component emerges when the transmission radius
reaches 0.3\/2, where A is the area containing the nodes. This may be used
to determine the ideal amplification, although further simulations on larger net-
works could be helpful. We also found a large gap between the number of nodes
required to populate the area, when all the nodes must be connected, or when
only 90% of the nodes are connected.
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1 INTRODUCTION

In missions that explore the surface of planets, many light
weight, low energy units such as landers, rovers, sensors will
be used to collect data. The data is collected and forwarded
back to Earth via an orbiter acting as a relay over long haul
links, such as the links typically used in the Deep Space Net-
work (DSN). Since the surface units are low energy units, it is
essential to minimize each transmitting node’s resources. They
must be sufficient to establish a network while minimizing mu-
tual interference and overall cost. For example, if the nodes of
a network need to route each other’s packets, then each node
should ideally transmit with just enough power to guarantee the
connectivity of the network.

The concept of collectively utilizing distributed sensor modules
in a hierarchical manner was first introduced as cooperative sen-
sor networking [1]. An extension of this idea is to prolong
the life-time of finite energy sources by leveraging cooperative
modulation techniques [2]. This relies heavily on the efficient
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usage of battery power on the local communication links and re-
quires some sharing of information, which motivates our inves-
tigation into the communication topologies for energy-efficient
broadcast.

The connectivity among nodes directly influences the efficiency
and reliability of information dissemination within a network.
Conventionally, the topology of an ad-hoc network is defined by
the transmission radius r of each node. Due to the dynamic and
ad-hoc nature of such networks, using a fixed » might not ren-
der a connected network at all times. Sometimes, the network is
partitioned into several connected components where each com-
ponent is a connected sub-network, but there are no connections
between the different sub-networks; we call this a partitioned
network.

In [3], Gupta and Kumar showed that, given n nodes such that
each node covers an RF circular area 7%, = lig":—c("), then
the network approaches connectivity with probability one as
c(n) (the connectivity measure in [3]) approaches infinity, syn-

onymous to the number of nodes approaching infinity.

In a previous study [4], we examined the alternate extreme of
[3] and established that the probability of successful broadcast
is low in an area with sparsely spaced nodes. Since the nodes
are sparsely spaced, the probability of obtaining a connected
network is low because each node has a restricted communi-
cation radius. This motivated us to consider graphs with guar-
anteed connectivity; we considered the minimum spanning tree
(MST), the relative neighborhood graph (RNG), and the min-
imum radius graph (minR). The MST is a tree connecting all
the nodes where the total edge length of the tree is minimized.
The RNG contains edges, where each edge connects two nodes
that are at least as close to each other as they are to the rest of
the points (see [5] for a precise definition). Assuming each node
must use the same transmission radius, a minR graph is obtained
by finding the smallest radius r which guarantees network con-
nectivity. From our previous simulations, we found RNG to be a
suitable topology for energy-efficient communication because it
compares favorably to MST and minR in terms of transmission
radius, edge density, node degree, fault tolerance, and hop diam-
eter. These graph properties affect the energy usage, scheduling
and reliability of the network.

In a wireless network, we want to operate the amplifiers opti-



mally at saturation. On the other hand, assuming a fixed bit
rate, we cannot use a fixed power level if we want to support
a communication topology defined by the RNG because RNG
contains edges of variable lengths. There is clearly a trade-off
between these objectives.

In this paper, we approach the problem of balancing the above
mentioned objectives by studying the connectivity structures of
the communication graphs, assuming a fixed communication ra-
dius for the nodes. Specifically, we are interested in the lower
bound on the number of transmissions required for broadcast
from a node to all the other nodes in the network.

We derived graph theoretical analyses, considering two cate-
gories of graphs. The first category consists of graphs whose
connectivities are independent of the spatial distribution of the
nodes. The second category contains graphs whose connectivi-
ties are influenced by the spatial distribution of nodes. Trees are
considered in our analyses as a special case of connected graphs.
We obtained a lower bound on the probability of trees having a
hop diameter d. Upper and lower bounds on the probability of
connected graphs having a hop diameter d are also derived.

For our simulations, we generated n nodes randomly placed in
a fixed square area, and computed the communication graph
topology assuming a transmission radius of », where n and r
are variables. The resulting data from the simulations are plot-
ted and compared to the plots produced from our graph analy-
ses. We observe similarities in the theoretical and experimental
results.

2 COMMUNICATION TOPOLOGIES

The diameter, or hop diameter, of a graph is the maximum num-
ber of hops between any pair of nodes using a shortest path
connecting the nodes. Usually, we expect a larger diameter for
sparse graphs and a smaller diameter for dense graphs. In ex-
treme cases, the diameter of a sparse graph with n nodes can be
as high as n — 1 while the diameter of a fully connected dense
graph is one. However, as [6], [7] pointed out, many real-world
graphs are sparse, but their diameters are around log n. An ex-
ample is the World Wide Web. The number of edges in this
real-world graph is closer to n, than to (’2’) Yet, it was reported
that the diameter of the Web is 19 [6]. The reason that such a
enormous graph has such a small diameter is because there are
short-cut links each spanning a large distance, and each such
link contributes only one hop to the diameter. In these graphs,
the topologies of the graphs are independent of geometric dis-
tances and the spatial relationship among the nodes. That is, it
may be as likely for a node to connect to its nearby neighbors as
it is for the node to connect to distant nodes. In this sense, the
Web is similar to random graphs [8]. In a random graph G(n, p)
with n nodes, each possible edge has the same probability p of
being chosen. These graphs tend to have a regular structure and
a diameter proportional to log .

However, random graphs may not be an appropriate model for
sensor networks. In a sensor network, each node can only com-

municate with other nodes within a bounded radial area. Thus,
we need to incorporate geometric dependencies and spatial re-
lationships when studying the topology of sensor networks. We
are especially interested in the diameter of sensor networks be-
cause this can be used as a lower bound on the number of trans-
missions needed for broadcast. Intuitively, the diameter of a sen-
sor network might be higher than O(log n) because the trans-
mission radius could restrict the edge lengths, producing longer
paths between

3  GRAPH ANALYSIS

Our graph analysis is based on several sets of assumptions.

Spatial Independence

First, we consider n randomly placed nodes in an area A, where
A is a variable and its value is a finite number. The nodes are
assumed to have unique positions, so two nodes cannot share a
common location. The unique position of a node can be used
as the node’s unique label. Therefore, our analysis concerns la-
beled graphs. In order to broadcast from a node to all other
nodes successfully, connectivity of the graph must be guaran-
teed. Let Enumeonn{n) and Enum,y;(n) denote the number of
connected labeled graphs and the number of all possible labeled
graphs on n nodes respectively. The probability of connectivity
for a labeled graph is then Enum on,(n)/Enumg;(n). Com-
binatorially, each edge is either included or excluded from the
graph. In other words, each edge has a 50% chance of being
included. Thus, Fnumgy(n) = 2™, where m is the num-
ber of all possible edges. We have n nodes, so n * (n — 1)
choices of node pairs are possible. Since the node pair (x, y)
and the node pair (y,x) are represented by the same non-
directed edge, the number of all possible edges is "*(#1—) So,
Enumgy(n) = 25m(n—1) Indeed, this is equivalent to [9,
Theorem 15.1] stating that the number of labeled graphs with
n nodes is Enumgy(n) = 2(2). We know that a minimally
connected graph is a spanning tree. Thus, the number of la-
beled spanning trees serves as a lower bound on the number
of connected labeled graphs. According to [9], the number of
labeled trees with n node was reported in [10] to be n"~2 by
Caley over a century ago. This can be used as a lower bound on
Enumconn(n).

Bounded Diameter Trees—Motivation to obtain a closed form
solution for the MST leads to the following result.

Theorem 1 (Weak lower bound diameter likelihood on trees)
. For n nodes, the probability of generating a tree with diameter

(dil)(d_l)n~lvd
) .

d is lower bounded by

LBiree(n)
Tan=2

If n > 2d — 1, then we have a tighter lower bound of
where

d-1
" )Z(dw—z)”“d—i. (1)

LBtree (n) = (d +1

=1
Proof of Theorem 1: Consider a connected labeled tree with
n nodes. Assume that the diameter of the graph is d where



2 < d < n—1, and fix a node such that the diameter of the
graph contains the node as an end-point; root the tree at this
end-point.

Since there are n — 1 nodes that are connected in some config-
uration, for diameter d, we have d + 1 nodes representing the
diameter. We consider the path representing the diameter of the
graph as the core of the tree. Thus, on the core, there are d — 1
possible locations for the n — 1 — d remaining nodes, where the
n — 1 — d nodes are placed with direct connections to the d — 1
nodes on the core.

Thus, since each of the n — 1 — d nodes can be placed in any
of the d — 1 locations, we have a (d — 1)"~1~¢ scenarios for a
diameter d where all cases involve nodes directly connected to
the d — 1 nodes on the core.

This quantity does not factor in multi-hop extensions off the
first d — 1 nodes. Thus, we can tighten this lower bound for
branches extended off the core such that the number of possible
node locations increases by one while the number of available
nodes reduces by one. Specifically, we have Z?:_ll (d—1+i—
Nyn-1-d=itl — Sd-lg | 9)n=d=i However, we require
n>2d—1.

We can choose from any of the n nodes to construct the initial d
diameter, resulting in (,7,) possible scenarios.

Finally, from [10] we have the total number of trees is "2 and
we are done.
N

As depicted in Figure 1, we see that the lower bound probability
is a weak bound for a large number of nodes. However, the
plot does provide some insight into the relative likelihood of the
graph topology with respect to a graph diameter.
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Fig. 1. Lower bound on the likelihood of a a graph diameter for n nodes.

We do not know how to compute the exact number of
Enumconn, here we suggest an upper bound.

Bounds on Connected Graphs— A necessary condition for a
graph G with n nodes to be connected is that G must contain at
least n—1 edges. Thus, if we subtract the number of graphs with

less than n — 1 edges from Enumygy;, we get an upper bound for
Enumconn- Similarly, we can extract all the cases of the n — 2
nodes connecting to at least one of the initially connected nodes
to obtain a lower bound on the number of connected graphs for
n nodes. We obtain,

@) n-2 Q)
and
(n-1y—2 "2 1
Biower(n) = 2 2 H(1-2m).
k=1

Lemma 2 (Upper and Lower bound) . For n nodes there ex-
ists an upper bound, Bypper (1) and lower bound, Bjgyer (1) on
the total number of connected graphs.

Proof of Lemma 2: Note that, subtracting the number of graphs
with less than n — 1 edges from Enumgy(n), we get an up-
per bound for Enumeonn{n). This is an upper bound because
having n — 1 or more edges is a necessary but not a sufficient
condition for connected graphs. The number of graphs with n

nodes and & edges is ((z) ) according to [9]. Thus, we have

?

Enumeonn(n) < 2(3) 15—:2 <(g)) _

1=1

For n nodes, suppose we connect two nodes. There are 2 ways
to connect the third node to each of the first two nodes and one
way to connect to both nodes, or rather, we have (f) + (;) =
241 = 3. We can generalize this such that for each of the n — 2
remaining nodes, the number of possible connections increases
by one where the k** node, for k = 1,...,n — 2, has a total of
Yokt (**1) possible connections to the previously connected k
nodes.

Recall the binomial theorem for = + y raised to the nt" power
may be represented as

@+y)" = @)

n
Z <n) 2yt
im0 \*
Recognize that the total number of possible connected graphs
Enumconn(n) is lower bounded by all possible connections for

the other n — 2 nodes, and then using (2) where ¢ = y = 1, we

have
n—2k+1 k+1>
n—2
= [+ -y

k=1

v

Enumconn(n)
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Corollary 3 (Weak bound on graph diameter likelihood) . For
n > 2d — 1, the probability of a graph with diameter d is lower

bounded by %'

Proof of Corollary 3: This can be derived from (1)
of Theorem 1 and the upper bound from Lemma 2.

Spatial Dependence

Motivated by the work of Gupta and Kumar [3], work by Jen-
nings and Okino [4] examined the likelihood of the number of
transmissions, for a relatively sparse network. The plot from [4]
for the number of transmissions provided that all the nodes n
reside in an area A,, such that

67 + (2w + 3v/3)(n — 2) 2

An > 5

3
where r, the maximum communication radius, of a node is
shown in Figure 2. We see that there is striking similarity be-
tween the likelihood of such events and the spatial independent
plot of Figure 1.
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Fig. 2. The likelihood of successful broadcast given the number of transmis-
sions and no knowledge on connectivity for various number of nodes n

4 SIMULATION RESULTS

For our simulation runs*, we generated n nodes, randomly
placed in an area A, where n = 5,10,15,---,100. and A is
a fixed area of 6002 square units, and diagonal 600+v/2 units.
Two uniformly distributed random integers are generated as the
coordinate of each node. The transmission radii are chosen
as a fraction of the length/width of A. The factors used are:
.01,.02,.05,.1,.15,-- - ,.85. Since the length/width of A is
600, the specific radii r used are: 6, 12, 30,60, 90, - - - , 510. For
each n, we generate 1000 node sets. Each node set is paired
with each r to obtain a graph G. Then, we compute the number
of connected components in G. If GG contains a single connected

*We have implemented the algorithms in JAVA (version 1.2) on a Sun Ultra-10
workstation.

component, then the graph is connected and we compute the di-
ameter of G. If G contains more than one connected component,
then we choose the largest connected component and compute
its diameter.
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Fig. 3. The hop diameter of the graph for specific.n with respect to r.

Figure 3 shows the hop diameter of a connected graph with n
nodes, averaged over the 1000 graphs. Clearly, the hop diam-
eter decreases as r increases. Note that, when n is large, we
obtain a connected graph at smaller ~ values. An interesting
question is, “for a given radius r, what is the minimum number
of nodes required to achieve connectivity?” In Figure 4, we plot
the smallest 2 values such that the number of nodes in the largest
connected component is > n X v, where v = .5,.75,.9, 1.0.
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Fig. 4. Minimum number of nodes required to achieve partial connectivity.

Note that, to guarantee connectivity at 7 = 0.3 requires > 90
nodes. On the other hand, for the same r, we only need to have
> 30 nodes to guarantee that 90% of the nodes are connected.
So, for applications that do not require all the nodes to be con-
nected, we can use fewer nodes. In the above example, we can
cut down the number of nodes to one-third.
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Fig. 5. The fraction of nodes in the largest connected component in graphs Fig. 7. Connected portion with r = .2.
produced by each (n, r) pair.

From Figure 5, we observe that at + = 0.3, a large connected
component emerges very fast as n increases. When r > 0.3,
even with a small n, we still get a large connected compo-  prob. conn
nent. So, for randomly place points using uniform distribution,

it seems that if we use a radius fraction of 0.3, there is a high 09
probability of connectivity when n < 100. We believe that a o7

0.6
smaller factor of r can be used as n becomes larger. However, g
we need to run further simulations to verify this. ot
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Using fixed r values, we observe the largest connected compo- 0
nent with respect to hop diameter and n. Suppose the largest
connected component has 7 nodes, we define connected portion

as % We used 14 different fraction values for r, but we choose 0
to include only four representative plots.

Fig. 8. Connected portion with r = .3.

prob. conn.

where there is a single peak. Figure 6 has a close resemblance
to Figures 1 and 2 because as n increases, the highest connected
portion tends to have a smaller diameter value. This can be seen
by regarding the curves along the x-axis for the different values
of n, and see the highest point shifts to the left as n increases. It
is also interesting to observe that as r > 0.2, the highest point
appears to occur on the same diameter value, as shown in Fig-
ures 7-9. This seems to imply that the diameter of the largest
connected component is around the same value regardless of the
values of n. It also implies that r is large enough so that the
diameter stays at a small constant. In Figures 6-8, we observe
that the connected portion approaches one as n increases. Fig-
ure 9 shows that if we use a large » > 0.8, then the connected
Fig. 6. Connected portion with r = .15. portion is one no matter what n is. It also show that the diame-
ter is at one which means the graph is similar to a clique (fully

Note that Figures 6-9 all have the similar shape as Figure 1 connected graph).
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Fig. 9. Connected portion with r = .80.

It seems discouraging that the connected portion for small 7 is so
low. However, our simulation runs generate at most 100 nodes in
an area of 360, 000 square units. That means, we have one node
per 3600 square units, which has a diagonal of 60+/2 units. To
determine what fraction this is with respect to a side of A, we get
%\/ﬁ = 0.1y/2 ~ 0.1414 which is very close to the 7 value we
used 0.15. Expanding on this, if we increase n, we conjecture
that graph connectivity will occur at 7 < 0.15. On the other
hand, we expect the diameter to increase with respect of n.

5 CONCLUSION

The desire to efficiently reduce the overall energy-per-bit of a
node motivated this study on the diameter of sensor networks.
Diameters are important because it can be used as lower bound
estimates on the number of transmissions required to broadcast
information. We derived a lower bound on the likelihood of a
tree with n nodes and diameter d, in terms of d and n. We also
derived an upper bound and a lower bound on the likelihood of a
connected graph with n nodes and diameter d. From these anal-
yses, we estimated the likelihood of successful broadcast in a
network of n nodes where the number of transmissions is fixed.
We observe that when 7 reaches 20, the probability of success-
ful broadcast within a fixed number of transmissions becomes
very small.

From our simulations, we observed that the diameter of a net-
work decreases very fast as the transmission radius increases.
Specifically, as r is increased, the diameter is decreased by a
fraction. We also noticed that at » = 0.3, we can obtain a con-
nected graph with as few as 10 nodes. If guaranteed connectivity
of all the nodes is not required, we found that fewer nodes are
needed to populate the area to have > 90% of the nodes be-
ing connected. In this initial study, the result seems to suggest
that a large connected component emerges at » = 0.3. Another
interesting property observed is that the largest connected com-

ponent seems to have the same diameter regardless of n.

For future research, we intend to run additional simulations on
larger n values to examine whether a large connected compo-
nent would emerge at smaller values of r. We will also exam-
ined whether the largest connected component will still have the
same diameter for larger values of n. Another interesting aspect
is the relation between n and the diameter. Specifically, we wish
to know that given n randomly placed nodes, could we expect
the diameter of the network to be logarithmic with high proba-
bility.

As another extension to our current work, we propose a new
metric representing the confidence on connectivity which we
call connectedness. The concept of connectedness is in the spirit
of the work of [11] on currentness for web page access rates and
reliability of information. For 7 nodes, we say that the largest
component contains v - n nodes for transmission radius r with
probability o.. Specifically, A network is said to have (n,v, o, )
connectedness if the largest component v < n nodes are con-
nected with probability « using transmission radius 7, and n is
the potential number of nodes in the network. The best case
scenario of connectedness is depicted in Figure 4 where « is not
explicitly characterized and left for future work.
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